已知sinα+sinβ=√6/3,cosa+cosβ=√3/3.则cos²(α-β)/2=
已知sinα+sinβ=√6/3,cosa+cosβ=√3/3.则cos²(α-β)/2=
sinα+sinβ=√6/3
平方一下
sin^2a+2sinasinb+sin^2B=2/3 1
cosa+cosβ=√3/3
平方一下
cos^2a+2cosacosb+cos^2B=1/3 2
1式+2式得
1+2sinasinb+2cosacosb+1=1
cosacosb+sinacosb=-1/2
cos(a-b)=-1/2 =2cos^2(a-b)/2-1
cos^2(a-b)/2=1/4
由题意知 a^2是a的平方的意思
(sina+sinb)^2=sin^2a+2sinasinb+sin^2b=2/3
(cosa+cosb)^2=cos^2a+2cosacosb+cos^2b=1/3
因为 sin^2a+coa^2a=1,sin^2b+cos^2b=1
所以
2+2(sinasinb+cosacosb)=1
sinasinb+cosacosb=-1/2
所以
cos^2(a-b)=cos(a-b)cos(a-b)=(cosacosb+sinasinb)(cosacosb+sinasinb)=1/4
cos^2(a-b)/2=1/8
(如果是cos^2[(a-b)/2],则 cos^2[(a-b)/2]=[1+cos(a-b)]/2=1/4)
∵sinα+sinβ=√6/3∴(sinα+sinβ)²=(√6/3)²=2/3∴sin²α+2sinαsinβ+sin²β=2/3 .(1)∵cosα+cosβ=√3/3∴(cosα+cosβ)²=(√3/3)²=1/3∴cos²α+2cosαcosβ+cos²β=...
cos²(α-β)/2=[cos(α-β)+1]/2
cos(α-β)=cosacosb+sinasinb
sinα+sinβ=√6/3
(sinα+sinβ)2=(√6/3)2
sin2a+sin2b+2sinasinb=2/3
cosa+cosβ=√3/3
(cosa+cosβ)2=(√3/3)2
cos2a+cos2b+2cosacosb=1/3
相加得到
sin2a+sin2b+2sinasinb+cos2a+cos2b+2cosacosb=2/3+1/3=1
1+2inasinb+1+2cosacosb=1
sinasinb+cosacosb=-1/2
cos²(α-β)/2=[cos(α-β)+1]/2=[-1/2+1]/2=1/4
若有帮助请采纳 嘻嘻