设函数f(x)=x^3+ax^2+bx+c,已知它在x=-2时有极值,且过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1 (1)求y=f(x)的表达式;(2)若在[-3,1] 上y=f(x)满足f(x)<m,求m的取值范围
问题描述:
设函数f(x)=x^3+ax^2+bx+c,已知它在x=-2时有极值,且过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1 (1)求y=f(x)的表达式;(2)若在[-3,1] 上y=f(x)满足f(x)<m,求m的取值范围
答
f(x)=-x^3+ax^2+bx+c的导函数:f‘(x)=-3x²+2ax+b点p(1,-2)处的切线方程为y=-3x+1.所以f‘(1)=-3 => 2a+b=0 ①点p(1,-2)满足f(x)解析式即f(1)=-2 => -1+a+b+c=-2 => a+b+c=-1 ②(1)若函数f(...