设a,b,c为正实数,求证:a^4+b^4+c^4>=a^2b^2+b^2c^2+c^2a^2>=abc(a+b+c).
问题描述:
设a,b,c为正实数,求证:a^4+b^4+c^4>=a^2b^2+b^2c^2+c^2a^2>=abc(a+b+c).
答
设a,b,c为正实数,求证:a^4+b^4+c^4>=a^2b^2+b^2c^2+c^2a^2>=abc(a+b+c).