一道数学题:设三角形ABC内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5.设三角形ABC内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5.(1)求tanAcotB的值(2)求tan(A+B)的最大值
问题描述:
一道数学题:设三角形ABC内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5.
设三角形ABC内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=3c/5.
(1)求tanAcotB的值
(2)求tan(A+B)的最大值
答
将欲取之,必先予之
答
(1)由正弦定理可知:a/sinA=b/sinB=c/sinC=2R,R为三角形外接圆的半径.则acosB-bcosA=3c/5可化为:sinAcosB-sinBcosA=3sinC/5且sinC=sin(180-A-B)=sin(A+B)=sinAcosB+sinBcosA sinAcosB-sinBcosA=3(sinAcosB+sinBcosA...