已知sin(π-a)=log8为底的1/4,切a属于(-π/2,0),求tan(3π/2+a)的值

问题描述:

已知sin(π-a)=log8为底的1/4,切a属于(-π/2,0),求tan(3π/2+a)的值

设log8为底的1/4=x,
则8^x=1/4,
2^(3x)=2^(-2),
3x=-2,x=-2/3.
sin(π-a)=-2/3,sina=-2/3,
a属于(-π/2,0),则cosa=√5/3.
tan(3π/2+a)=sin(3π/2+a)/cos(3π/2+a)
=-cosa/sina=√5/2.

sin(π-a)=log8为底的1/4
所以sin(π-a)=-2/3
a属于(-π/2,0),
所以-a属于(0,π/2)
则cosa=√5/3.
tan(3π/2+a)=sin(3π/2+a)/cos(3π/2+a)
=-cosa/sina=√5/2.

sin(π-a)=log8(1/4) = {log2(1/4)}/{log2(8) = (-2)/3 = -2/3
sina=-2/3
a属于(-π/2,0)
tan(3π/2+a)=tan{2π-π/2+a)=tan(-(π/2-a))=-tan(π/2-a)=-cota=-{√(1-sin^2a)/sina}
= -√(1-4/9)/(-2/3) = √5/2