求推导sinx-siny=2cos((x+y)/2)sin((x-y)/2)

问题描述:

求推导sinx-siny=2cos((x+y)/2)sin((x-y)/2)

cosαsinβ= 1/2[sin(α+β)-sin(α-β)]
(x+y)/2=α (x-y)/2=β
2cos((x+y)/2)sin((x-y)/2)=2*[1/2(sinx-siny)]=sinx-siny

sin((x+y)/2+(x-y)/2)-sin((x+y)/2-(x-y)/2)
化简出来就是了

用积化和差公式cosαsinβ= 1/2[sin(α+β)-sin(α-β)]
(x+y)/2=α (x-y)/2=β代入上式
得到2cos((x+y)/2)sin((x-y)/2)=2*[1/2(sinx-siny)]=sinx-siny