已知函数f(x)=sin(wx+π/6)+cos(wx+π/6)(w>0)且函数y=f(x)图像的两相邻对称轴间距离为π/2求f(x)
问题描述:
已知函数f(x)=sin(wx+π/6)+cos(wx+π/6)(w>0)且函数y=f(x)图像的两相邻对称轴间距离为π/2求f(x)
答
sin(wx+π/6)+cos(wx+π/6) =根2[根2/2(sin(wx+π/6)+cos(wx+π/6))]=根2[sin(wx+π/6+π/4)] 可以看出x的系数为w 函数y=f(x)图像的两相邻对称轴间距离为π/2,即D=π/2 T=2D=πT=2π/w=πw=2所以原式=根2[sin(2x...