∫(tanx)^2*(secx)^2*(secx)^2x*dx=∫(tanx)^2*(1+tan)^x*dtanx是怎么得到的
问题描述:
∫(tanx)^2*(secx)^2*(secx)^2x*dx=∫(tanx)^2*(1+tan)^x*dtanx是怎么得到的
答
有图有兄
答
∫tan²x·sec²x·(secx)^(2x)dx
∵(tanx)'=sec²x
∴∫tan²x·sec²x·(secx)^(2x)dx
=∫tan²x·(tanx)'·(secx)^(2x)dx
=∫tan²x·(secx)^(2x)d(tanx)
=∫tan²x·(sec²x)^(x)d(tanx)
∵sec²x=1+tan²x
∴上式=∫tan²x·(1+tan²x)^(x)d(tanx)
不好意思,没做完误点了~!!~!
晕,求助……
答
(secx)^2=1/(cosx)^2=[(cosx)^2+(sinx)^2]/(cosx)^2=1+(tanx)^2
(tanx)'=(sinx/cosx)'=[(cosx)^2+(sinx)^2]/(cosx)^2=(secx)^2、(secx)^2dx=d(tanx)
∫(tanx)^2*(secx)^2*(secx)^(2x)*dx=∫(tanx)^2*[1+(tanx)^2]^x*d(tanx)