函数f(x)=2sinx(sinx+cosx)的单调增区间为
问题描述:
函数f(x)=2sinx(sinx+cosx)的单调增区间为
答
这个是难题?
答
f(x)=2sinx(sinx+cosx )
=2sinx^2+2sinxcosx
=-cos2x+1+ sin2x
=sin(2x+π/4)+1
故区间为(-3π/8+Kπ , π/8+π)K属于Z
答
f(x)=2sin²x+2sinxcosx =1-cos2x+sin2x =1+√2*(√2/2*sin2x-√2/2*cos2x) =1+√2*sin(2x-π/4)令2kπ-π/2≤2x-π/4≤2kπ+π/2得:kπ-π/8≤x≤kπ+3π/8所以单调递增区间为[kπ-π/8,kπ+3π/8...
答
f(x)=2sinx(sinx+cosx)=2sin²x+2cosxsinx
=1-cos2x+sin2x
=√2sin(2x-π/4)
2kπ-π/2≤2x-π/4≤2kπ+π/2
解得:kπ-π/8≤x≤kπ+3π/8
所以单调增区间为[kπ-π/8,kπ+3π/8]