椭圆x^2/a^2+y^2/b^2=1 (a>b>0)的离心率e=√2/2,点A是椭圆上的一点,A到两焦点的距离之和为41.求椭圆C的方程.2.椭圆C上一动点P(X0,Y0)关于直线y=2x的对称点P1(X1,Y1),求3X1-4Y1的取值范围
问题描述:
椭圆x^2/a^2+y^2/b^2=1 (a>b>0)的离心率e=√2/2,点A是椭圆上的一点,A到两焦点的距离之和为4
1.求椭圆C的方程.
2.椭圆C上一动点P(X0,Y0)关于直线y=2x的对称点P1(X1,Y1),求3X1-4Y1的取值范围
答
A到两焦点的距离之和为4,即2a=4,a=2
e=c/a=√2/2,则c=根号2
c^2=a^2-b^2
2=4-b^2,b^2=2
即方程是:x^2/4+y^2/2=1.
因为点P1与点P关于直线y=2x对称,有
(yo+y1)/2=2*(xo+x1)/2 ①
(yo-y1)/(xo-x1)=-0.5 ②
整理得 x1= (4yo-3xo)/5 y1=(4x0+3y0)/5
代入3x1-4y1=-5x0
又点A在椭圆上,所以-2≤xo≤2,所以-10≤xo≤10
所以取值范围为[-10,10]
以下仅供参考:
A在椭圆上
可设x0=2cosθ,y0=根号2*sinθ
A(2cosθ,根号2*sinθ)
过A做垂直直线2x-y=0的直线L
所以直线L斜率=-1/2
所以直线L y-根号2*sinθ=-1/2(x-2cosθ)
该直线与2x-y=0的交点M
M(2/5(根号2*sinθ+cosθ),4/5(根号2*sinθ+cosθ))
所以A关于M的对称点P
x1=(4根号2*sinθ-6cosθ)/5
y1=(3倍根号2sinθ+8cosθ)/5
所以3x1-4y1=10cosθ
所以 -10≤3x1-4y1≤10