1.根号下[(1-cosα)/(1+cosα)]+根号下[(1+cosα)/(1-cosα)](α是钝角)2.(sinx/1-cosx)×根号下(tanx-sinx)/(tanx+sinx)

问题描述:

1.根号下[(1-cosα)/(1+cosα)]+根号下[(1+cosα)/(1-cosα)](α是钝角)
2.(sinx/1-cosx)×根号下(tanx-sinx)/(tanx+sinx)

1.根号下[(1-cosα)(1+cosα)/(1+cosα)^2]+根号下[(1-cosα)(1+cosα)/(1-cosα)^2]
由于(sinα)^2+(cosα)^2=1,是钝角,αsinα>0
故上式化简
[sinα/(1+cosα)]+[sinα/(1-cosα)]
={[sinα*(1+cosα)]+[sinα(1-cosα)]}/1-(cosα)^2
=2sinα/(sinα)^2
=2/sinα
2.先化简(tanx-sinx)/(tanx+sinx)
=(sinx/cosx-sinx)/(sinx/cosx+sinx)
=(1/cosx-1)/(1/cosx+1)
=(1-cosx^2)/(1+cosx)^2
=sinx^2/(1+cosx)^2
根号下(tanx-sinx)/(tanx+sinx)=sinx/(1+cosx)
(sinx/1-cosx)×根号下(tanx-sinx)/(tanx+sinx)=(sinx)^2/(1-cosx^2)=1

2;
1;

α是钝角,所以cosα0;
根号下[(1-cosα)/(1+cosα)]=sinα/(1+cosα);
根号下[(1+cosα)/(1-cosα)]=sinα/(1-cosα);
结果为2;
根号下(tanx-sinx)/(tanx+sinx)=sinα/(1+cosα)
结果为1;