证明向量组线性相关已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=a1+4a2+a3.证明:向量组B必线性相关
问题描述:
证明向量组线性相关
已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=a1+4a2+a3.证明:向量组B必线性相关
答
方法一:b1-b2+b3=0,所以向量组B线性相关
方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=
1 2 1
-3 1 4
-1 0 1
|C|=0,所以秩(B)≤秩(C)<3,所以向量组B线性相关