某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品种 甲 乙 丙每辆汽车运载量(吨) 8 6 5每吨土特产获利(百元) 12 16 10(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.

问题描述:

某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:

土特产品种
每辆汽车运载量(吨) 8 6 5
每吨土特产获利(百元) 12 16 10
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.

(1)∵8x+6y+5(20-x-y)=120,
∴y=20-3x.
∴y与x之间的函数关系式为y=20-3x.                              (3分)
(2)由x≥3,y=20-3x≥3,即20-3x≥3可得3≤x≤5

2
3

又∵x为正整数,
∴x=3,4,5.                                    (5分)
故车辆的安排有三种方案,即:
方案一:甲种3辆乙种11辆丙种6辆;
方案二:甲种4辆乙种8辆丙种8辆;
方案三:甲种5辆乙种5辆丙种10辆.                                 (7分)
(3)设此次销售利润为W百元,
W=8x•12+6(20-3x)•16+5[20-x-(20-3x)]•10=-92x+1920.
∵W随x的增大而减小,又x=3,4,5
∴当x=3时,W最大=1644(百元)=16.44万元.
答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.(10分)
答案解析:(1)因为公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售,设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,则装运丙特产的车辆数为(20-x-y),且8x+6y+5(20-x-y)=120,整理即得y与x之间的函数关系式.
(2)因为装运每种土特产的车辆都不少于3辆,所以x≥3,y≥3,20-x-y≥3,结合(1)的答案,就可得到关于x的不等式组,又因x是正整数,从而可求x的取值,进而确定方案.
(3)可设此次销售利润为W百元,由表格可得W=8x•12+6(20-3x)•16+5[20-x-(20-3x)]•10=-92x+1920,根据y随x的变化规律,结合(2)中所求,就可确定使利润最大的方案.
考试点:一次函数的应用.

知识点:本题需仔细分析题意,利用不等式组求出自变量的取值,从而确定方案.