已知函数f(x)=sin(2x+π/3)+sin(2x-π/3)+2cos²x-1,x∈R (1)求函数f(x)的最小正周期 (2)求函数f(x)在区间【-π/4,π/4】上的最大值和最小值

问题描述:

已知函数f(x)=sin(2x+π/3)+sin(2x-π/3)+2cos²x-1,x∈R
(1)求函数f(x)的最小正周期
(2)求函数f(x)在区间【-π/4,π/4】上的最大值和最小值

f(x)=sin(2x+π/3)+sin(2x-π/3)+2cos²x-1
=2sin2xcosπ/3+cos2x
=sin2x+cos2x
=√2sin(2x+π/4)
(1)函数f(x)的最小正周期
T=2π/2=π
(2)因-π/4≤x≤π/4
所以-π/4≤2x+π/4≤3π/4
-√2/2≤sin(2x+π/4)≤1
-1≤√2sin(2x+π/4)≤√2
所以f(x)在区间【-π/4,π/4】上的最大值√2
最小值-1

f(x)=sin(2x+π/3)+sin(2x-π/3)+2cos²x-1=2sin2xcosπ/3+2cos²x-1(和差化积)=sin2x+2cos²x-1=sin2x+cos2x=√2*sin(2x+π/4)(1)f(x)的最小正周期T=2π/2=π(2)当x∈【-π/4,π/4】时...