求极限 lim [(3+x)/(6+x)]^[(x-1)/2]= x→∞求极限 lim [(3+x)/(6+x)]^[(x-1)/2]=x→∞
问题描述:
求极限 lim [(3+x)/(6+x)]^[(x-1)/2]= x→∞
求极限 lim [(3+x)/(6+x)]^[(x-1)/2]=
x→∞
答
解[(3+x)/(6+x)]^[(x-1)/2]=[(1+3/x)/(1+6/x)]^[(x-1)/2]
因为x趋近无穷大所以(1+3/x)/(1+6/x)趋近于1
原式=1
答
[(3+x)/(6+x)]^[(x-1)/2]
={[1-1/((x+6)/3)]^[x+6/3]}^3/2 * [1-3/(x+6)]^(-7/2)
=(e^-1)^3/2
=e^(-3/2)
答
点击放大、荧屏放大再放大: