小刚为书房买灯,现有两种灯可供选择,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价18元/盏,假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,并已知小明家所在地的电价是每千瓦时0.5元.(1)小刚想在这两种灯中选购一盏①当照明时间是多少小时使用两种灯的费用一样多?②直接指出,当照明时间在什么范围内,选用白炽灯费用低?当照明时间在什么范围内,选用节能灯费用低?(2)小刚想在这两种灯中选购两盏,假定灯的使用寿命都是2800小时,而计划照明3000小时,请你帮他设计一种费用最低的选灯方案,并说明理由.
小刚为书房买灯,现有两种灯可供选择,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价18元/盏,假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,并已知小明家所在地的电价是每千瓦时0.5元.
(1)小刚想在这两种灯中选购一盏①当照明时间是多少小时使用两种灯的费用一样多?②直接指出,当照明时间在什么范围内,选用白炽灯费用低?当照明时间在什么范围内,选用节能灯费用低?
(2)小刚想在这两种灯中选购两盏,假定灯的使用寿命都是2800小时,而计划照明3000小时,请你帮他设计一种费用最低的选灯方案,并说明理由.
(1)①设当照明时间为x小时使用两种灯费用一样,依题意得:
49+0.0045x=18+0.02x,
解得x=2000,
答:当照明时间是2000小时时,两种灯的费用一样多;
②当照明时间少于2000小时时,选用白炽灯费用低.
当照明时间超过2000小时时,选用节能灯费用低;
(2)分下列三种情况讨论:
①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;
②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;
③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.
费用是67+0.0045×2800+0.02×200=83.6元.
综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低.
答案解析:(1)①根据“费用=灯的售价+电费”得到节能灯及白炽灯费用的关系式,让这两个关系式相等求解可得相应的时间;
②由(1)得到的结果进行求解即可.
(2)分下列三种情况讨论:
①如果选用两盏节能灯,则费用是多少元;
②如果选用两盏白炽灯,则费用是多少元;
③如果选用一盏节能灯和一盏白炽灯费用是多少元.通过比较可得费用最低的方案.
考试点:一元一次不等式的应用.
知识点:考查一次函数的应用;得到总费用的关系式是解决本题的关键;选择费用最低的方案是解决本题的难点.