cos^4(x)-sin^4(x)+2sin^x的值等于

问题描述:

cos^4(x)-sin^4(x)+2sin^x的值等于

cos^4(x)-sin^4(x)+2sin^2(x)
=[cos^2(x)+sin^2(x)][cos^2(x)-sin^2(x)]+2sin^2(x) 【cos^2(x)+sin^2(x)=1】
=cos^2(x)-sin^2(x)+2sin^2(x)
=cos^2(x)+sin^2(x)
=1