三角形AFB,角AFB=90度,AF=3,角FAB=60度,角FBA=30度,求FB和AB

问题描述:

三角形AFB,角AFB=90度,AF=3,角FAB=60度,角FBA=30度,求FB和AB

∵cos30°=AF/AB
∴AB=AF/cos30°=3÷(√3/2)=2√3
∵sin30°=FB/AB
∴FB=AB×sin30°=2√3×½=√3

在此三角形中、AF=ABcos60、、FB=ABcos30、、已知AF=3、代入解得AB=6、FB=3倍的根3

告你一句口诀,30°所对的边等于斜边的一半,AF就是30°所对的边,所以斜边AB=2AF=6
那么利用勾股定理就能算出FB=3倍根号3

AB=3乘以2=6;BF大于3小于9.

fb=3倍根号2 ab=6 原理30度所对直角边等于斜边一半

FB=3√3 AB=6 设AB的中点为C 连接FC 根据等边三边都相等和等腰三角形的腰相等 即可解出本题

汗。。。我也是初二,刚学完勾股,马上学中心对称图形了
在Rt▷AFB中
∠FBA=30°,AF=3
∴ 斜边AB=2x3=6 (30°角所对直角边等于斜边的一半)
∴ BF^2=AB^2-AF^2=6^2-3^2=27
∴ BF=根号27=3倍根号3


直角三角形AFB,∠FBA=30°,AF=3
所以 斜边AB=2x3=6 (30°角所对直角边等于斜边的一半)
所以 BF^2=AB^2-AF^2=6^2-3^2=27
所以 BF=根号27=3倍根号3

FB=3x根号3,AB=6

FB=3倍根号3,AB=6,根号不会打- -