如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.
问题描述:
如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.
答
(1)△BDE是等腰三角形.
由折叠可知,∠CBD=∠EBD,
∵AD∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
即△BDE是等腰三角形;
(2)设DE=x,则BE=x,AE=8-x,
在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8-x)2=x2,
解得:x=5,
所以S△BDE=
DE×AB=1 2
×5×4=10.1 2
答案解析:(1)由折叠可知,∠CBD=∠EBD,再由AD∥BC,得到∠CBD=∠EDB,即可得到∠EBD=∠EDB,于是得到BE=DE,等腰三角形即可证明;
(2)设DE=x,则BE=x,AE=8-x,在Rt△ABE中,由勾股定理求出x的值,再由三角形的面积公式求出面积的值.
考试点:翻折变换(折叠问题).
知识点:本题主要考查翻折变换的知识点,解答本题的关键是熟练掌握等腰三角形的判定与勾股定理的知识,此题难度不大.