已知两个正实数x,y,满足x+y=4,求1/x+4/y的最小值

问题描述:

已知两个正实数x,y,满足x+y=4,求1/x+4/y的最小值

解答如下:1/x + 4/y = 4/4x + 4/y = (x + y)/ 4x + (x + y)/y = 1/4 + y/4x + x/y + 1 ≥ 5/4 + 1 = 9/4当且仅当y/4x = x/y,即x =4/3,y = 8/...