讨论函数f(x)=lim(1-x^2n)/(1+x^2n)x的连续性,若有间断点,判断其类型
问题描述:
讨论函数f(x)=lim(1-x^2n)/(1+x^2n)x的连续性,若有间断点,判断其类型
答
∵y=lim(x->∞){[(1-x^2n)/(1+x^2n)]x}
∴当│x│1时,y=-x
∵lim(x->1+)y=lim(x->1+)(-x)=-1
lim(x->1-)y=lim(x->1-)(x)=1
∴lim(x->1+)y≠lim(x->1-)y,即x=1是第一类间断点
∵lim(x->-1+)y=lim(x->-1+)(x)=-1
lim(x->-1-)y=lim(x->-1-)(-x)=1
∴lim(x->-1+)y≠lim(x->-1-)y,即x=-1是第一类间断点
故此函数只有两个是第一类间断点,它们分别是x=1与x=-1.