点O是边长为4正方形ABCD的中心,点E,F是AD,BC的中点,沿对角线AC把正方形ABCD折叠成直二面角D-AC-B.
问题描述:
点O是边长为4正方形ABCD的中心,点E,F是AD,BC的中点,沿对角线AC把正方形ABCD折叠成直二面角D-AC-B.
1.求角EOF的大小 2.求二面角E-OF-A的大小
答
1.以O为原点,OA,OD,OB为x,y,z轴建立坐标系,则E(2,2,0),F(-2,0,2)
所以向量OE=(2,2,0),OF=(-2,0,2)
cos=OE*OF/(|OE||OF|)=(-4+0+0)/(2√2*2√2)=-1/2
所以∠EOF=arccos(-0.5)=120°
2.得坐标A(2√2,0,0),O(0,0,0),F(-2,0,2),E(2,2,0)
所以面AOF方程为:y=0
面EOF方程为:x-y+z=0
所以AOF法向量为n1=(0,1,0),EOF法向量为n2=(1,-1,1)
故=arccos(n1*n2/(|n1||n2|))=arccos(-1/√3)=125.3°
由于二面角取锐角,所以E-OF-A=180°-125.3°=54.7°(=arccos(1/√3))