已知f(x)=x(x+1)(2x+1)(3x+1)…(nx+1),求f′(0)=_.
问题描述:
已知f(x)=x(x+1)(2x+1)(3x+1)…(nx+1),求f′(0)=______.
答
f′(x)=[x(x+1)(2x+1)(3x+1)…(nx+1)]′=(x+1)(2x+1)(3x+1)…(nx+1)+x[(x+1)(2x+1)(3x+1)…(nx+1)]′
当x=0时,f′(0)=(0+1)(2×0+1)(3×0+1)…(n×0+1)+0×[(0+1)(2×0+1)(3×0+1)…(n×0+1)]′=1
故答案为:1