已知圆方程x平方+y平方+4x-6y=0,直线y=3x+b,求当直线y=3x+b与圆相切时的直线方程

问题描述:

已知圆方程x平方+y平方+4x-6y=0,直线y=3x+b,求当直线y=3x+b与圆相切时的直线方程

圆标准方程为:(x+2)^2+(y-3)^2=13
相切时,圆心(-2,3)到直线的距离等于等于半径,则
|-6-3+b|/√10=√13
b=9±√130
直线方程为y=3x+9±√130