设x,y,z为正实数,满足x-y+2z=0,则y^2/xz的最小值是

问题描述:

设x,y,z为正实数,满足x-y+2z=0,则y^2/xz的最小值是
设x,y,z为正实数,满足x-y+2z=0,则(y^2)/(xz)的最小值是

y=x+2z
(y^2)/(xz)=(x^2+2z^2+4xz)/xz=1/z+2/x+4
...