正方形ABCD中,一条边AB在直线y=x+4上,另外两顶点C、D在抛物线y2=x上,求正方形的面积.

问题描述:

正方形ABCD中,一条边AB在直线y=x+4上,另外两顶点C、D在抛物线y2=x上,求正方形的面积.

设CD所在直线的方程为y=x+t,∵y=x+ty2=x消去y得,x2+(2t-1)x+t2=0,∴|CD|=2[(1-2t)2-4t2]=2(1-4t),又直线AB与CD间距离为|AD|=|t-4|2,∵|AD|=|CD|,∴t=-2或-6;从而边长为32或52.面积S1=(32)2=18,S2=(52...