中值定理证明
问题描述:
中值定理证明
设f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0 证明至少存在一点g∈(0,1)使得f’(g)f(1-g)=f(g)f`(1-g)
是f(0)=0
答
令F(x)=f(x)f(1-x)即可,由于F(0)=F(1)=f(0)f(1)=0,满足罗尔定理的条件,因此存在g∈(0,1),使得F'(g)=0,即f'(g)f(1-g)-f(g)f'(1-g)=0