已知定圆C:(x-1)2+y2=1,若动圆P与定圆C外切,并且与y轴相切,那么动圆圆心P的轨迹方程是_.

问题描述:

已知定圆C:(x-1)2+y2=1,若动圆P与定圆C外切,并且与y轴相切,那么动圆圆心P的轨迹方程是______.

设动点P的坐标为(x,y),由题设知:

(x−1)2+y2
-1=|x|,
化简得:x>0时,y2=4x.
x≤0时,y=0
所以,P点的轨迹方程为y2=4x(x>0)和y=0(x≤0).
故答案为:y2=4x(x>0)和y=0(x≤0).