设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径 A.成正比,比例系数为C B.成正比,比例系数为2C C.成反比,比例系数为C D.成反比,比例系数为2C
问题描述:
设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径
A. 成正比,比例系数为C
B. 成正比,比例系数为2C
C. 成反比,比例系数为C
D. 成反比,比例系数为2C
答
由题意可知球的体积为V(t)=43πR3(t),则c=V′(t)=4πR2(t)R′(t),由此可得cR(t)R′(t)=4πR(t),而球的表面积为S(t)=4πR2(t),所以V表=S′(t)=4πR2(t)=8πR(t)R′(t),即 V表=8πR(t)R′...