已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.

问题描述:

已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.
1.求f(x)的解析式
2.若y=f(x)+m的图像与X轴仅有一个公共点,求m的范围

因为f(x)=ax3+bx2+cx+d为奇函数,所以f(-x)=-f(x),所以b=d=0所以f(x)=ax3+cx,又在点(2,f(2))处的切线方程为9x-y-16=0.,所以f′(x)=3ax2+c,12a+c=9 ……1式8a+2c-18=-16 ……2式联立解得a=1,c=-3所以f(x)=x3-3x(2)y=x3...