设函数f(x)=ax平方+bx+1(a,b为实数) F(x)={f(x),x>0 -f(x),x0,n0 a>0,f(x)为偶函数,求证F(m)+F(n)>0
问题描述:
设函数f(x)=ax平方+bx+1(a,b为实数) F(x)={f(x),x>0 -f(x),x0,n0 a>0,f(x)为偶函数,求证F(m)+F(n)>0
答
(1)由题意,当x>0时,F(x)=f(x)=ax²+bx+1,∴F(1)=a+b+1=4,即a+b=3;
当x0,n0
f(x)为偶函数,b=0
当x>0时,F(x)=x²+1,当x0