向量OA=(cosα,sinα),OB=[-sin(α+π/6),cos(α+π/6)]
问题描述:
向量OA=(cosα,sinα),OB=[-sin(α+π/6),cos(α+π/6)]
求OA·OB.
答
oA .OB=(cosα,sinα)[-sin(α+π/6),cos(α+π/6)]=1求详细过程,谢谢