矩阵满秩 怎样证明该矩阵的转置与该矩阵相乘所得矩阵为对称正定矩阵且满秩

问题描述:

矩阵满秩 怎样证明该矩阵的转置与该矩阵相乘所得矩阵为对称正定矩阵且满秩

(A^TA)^T = A^T(A^T)^T = A^TA
所以 A^TA 为对称矩阵.
满秩矩阵的乘积 仍满秩,故 A^TA满秩
对任一非零向量x,由于A满秩,Ax≠0
所以 (Ax)^T(Ax) > 0
即 x^T(A^TA)x > 0
所以 A^TA 正定.