这里可以利用对称幂等矩阵的性质证明半正定吗?n阶方阵A=Px-(n+1)/n diag(Px),B=Px-diag(Px),C=I-Px [I为n阶单位矩阵],其中Px=X(X'X)^-1X',X为某个n*K的满列秩矩阵.请问A-C和B+C是否为半正定矩阵?

问题描述:

这里可以利用对称幂等矩阵的性质证明半正定吗?
n阶方阵A=Px-(n+1)/n diag(Px),B=Px-diag(Px),C=I-Px [I为n阶单位矩阵],其中Px=X(X'X)^-1X',X为某个n*K的满列秩矩阵.请问A-C和B+C是否为半正定矩阵?