高中数学(二项式定理)(1+ax+by)^n,展开式中不含x项的系数绝对值分和为243,不含Y的项的系数的绝对值的和为32,则a,b,n的可能数值为()A.a=2,b=-1,n=5B.a=-2,b=-1,n=6C.a=-1,b=2,n=6D.a=1,b=2,n=5因为是三项的,所以可以将(1+ax)看成是一组,随后用公式表达出来,但是不懂“系数绝对值”怎么表示和处理了.
问题描述:
高中数学(二项式定理)
(1+ax+by)^n,展开式中不含x项的系数绝对值分和为243,不含Y的项的系数的绝对值的和为32,则a,b,n的可能数值为()
A.a=2,b=-1,n=5
B.a=-2,b=-1,n=6
C.a=-1,b=2,n=6
D.a=1,b=2,n=5
因为是三项的,所以可以将(1+ax)看成是一组,随后用公式表达出来,但是不懂“系数绝对值”怎么表示和处理了.
答
答案选D∵令x=0,可得(1+ax+by)^n 展开式中不含x的项.又∵(1+ax+by)^n 展开式中不含x的项的系数绝对值的和为243∴(1+by)^n的展开式的系数绝对值的和为243=3^5当y=1时,(1+by)^n的展开式的系数的和为(1+b)^nb≠0...