已知曲线C是到P(-1/2,3/8)和直线y=-5/8距离相等的轨迹,l是过点Q(-1,0)的直线,

问题描述:

已知曲线C是到P(-1/2,3/8)和直线y=-5/8距离相等的轨迹,l是过点Q(-1,0)的直线,
M是C上(不在C上)的动点,A,B在l上,MA⊥l,MB⊥x轴 (1)求C的方程(2)求出直线的方程,使QB^2/QA为常数

(1)曲线C轨迹是以P(-1/2,3/8)为焦点,以直线y=-5/8为准线的抛物线,过P点做直线y=-5/8的垂线,垂线段长3/8+5/8=1,垂线段中点(-1/2,-1/8)即为抛物线顶点.抛物线方程为:(x+1/2)²=2(y+1/8),整理得到y=(x²+x)/...