如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,AD与BE相交于点F,若BF=AC,求∠ABC的大小.

问题描述:

如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,AD与BE相交于点F,若BF=AC,求∠ABC的大小.

∵AD⊥BC,BE⊥AC(已知),
∴∠ADB=∠ADC=∠BEC=90°(垂直定义),
又∵∠AFE=∠BFD(对顶角相等),
∴△AEF∽△BDF(两对对应角相等的两三角形相似),
∴∠FAE=∠FBD(相似三角形的对应角相等),
在△BFD和△ACD中,

∠BDA=∠ADC(已证)
∠FBD=∠FAE(已证)
BF=AC(已知)

∴△BFD≌△ACD(AAS),
∴BD=AD(全等三角形的对应边相等),
∴∠BAD=∠ABD(等边对等角),
又∵∠ADB=90°(已证),
∴∠ABC=
180°−90°
2
=45°(三角形的内角和定理).