已知f(x)=2sin(-2x+π/6)+a+1(a为常数)

问题描述:

已知f(x)=2sin(-2x+π/6)+a+1(a为常数)
1.求函数单调递增,递减区间
2.求f(x)最小值并求x值
3.对称中心
4.π/6≤x≤π3时f(x)最小值等于-1,求a
5.π/6≤x≤π/3时f(x)最大值为1,求a

1、对f(x)求导,得f'(x)=2cos(-2x+π/6)*(-2)=4cos(-2x+π/6)对函数f'(x)=4cos(-2x+π/6),当-π/2+2kπ≤-2x+π/6≤π/2+2kπ时,f'(x)≤0,f(x)单调递减,此时-π/6-kπ≤x≤π/3-kπ当π/2+2kπ≤-2x+π/6≤π+2kπ时,...