已知向量a=( 3,1),b=(0,-1),c=(k,3).若a-2b与c共线,则k= .

问题描述:

已知向量a=( 3,1),b=(0,-1),c=(k,3).若a-2b与c共线,则k= .

向量a=( 3,1),b=(0,-1),c=(k,3).
所以a-2b=(3-0,1+2)=(3,3)
因为a-2b与c共线
则(a-2b)*c=x1y2-x2y1=9-3k=0
所以k=3