已知抛物线y2=4x的焦点为F,过F作两条相互垂直的弦AB,CD,设弦AB,CD的中点分别为M,N.求证:直线MN恒过定点.

问题描述:

已知抛物线y2=4x的焦点为F,过F作两条相互垂直的弦AB,CD,设弦AB,CD的中点分别为M,N.求证:直线MN恒过定点.

设点A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4)把直线AB:y=k(x-1)代入y2=4x,得k2x2-(2k2+4)x+k2=0,∴x3=x1+x22=1+2k2,y3=k(x3-1)=2k同理可得,x4=1+2k2,y4=-2k∴kMN=y 3−y4x 3−x4=...
答案解析:若要证直线MN必过定点P,只需求出含参数的直线MN的方程,观察是否过定点即可.因此设出A、B、M、N的坐标,用A、B坐标表示M、N坐标,从而求出直线MN方程,化简得y=

k
1−k2
(x-3),可得直线必过点(3,0),命题得证.
考试点:恒过定点的直线.
知识点:本题给出抛物线互相垂直的弦AB、CD,求它们的中点确定的直线恒过定点.着重考查了直线与抛物线位置关系、直线过定点的判断等知识,属于中档题.