证明:lim{∏/n[sin(∏/n)+sin(2∏/n)+...+sin(n∏/n)]}=2(n趋于正无穷大)

问题描述:

证明:lim{∏/n[sin(∏/n)+sin(2∏/n)+...+sin(n∏/n)]}=2(n趋于正无穷大)

定积分定义
=∫sinxdx(0-∏)=2