△ABC是直角三角形,∠ABC=90°以AB为直径的圆O交AC于点E,点D是BC边的中点,连接DE.
问题描述:
△ABC是直角三角形,∠ABC=90°以AB为直径的圆O交AC于点E,点D是BC边的中点,连接DE.
1.求证:DE与圆O相切.
2.若圆O的半径为根号3,DE=3,求AE.
答
连接OE、BE.
△BCE中,DE是斜边上的中线,得DE=BD=CD,
所以角C=角CED.
△AOE中,角A=角AEO;
又因为角A+角C=90°,
所以角AEO+角CED=90° .
所以角OED=90°.
所以DE与圆O相切.
Rt△ABC中,AB=2倍根号3,BC=2DE=6.
所以角A=60°.
所以△AEO是等边三角形,AE=根号3.