设随机变量X,Y相互独立,且都服从【0,1】上的均匀分布,求X+Y的概率密度
问题描述:
设随机变量X,Y相互独立,且都服从【0,1】上的均匀分布,求X+Y的概率密度
答
X,Y相互独立,且都服从[0,1]上的均匀分布 --> f(x,y)=1.
Z=X+Y
F(z)=P(x+y<z) = ∫∫f(x,y)dxdy = ∫∫dxdy =直线x=0,x=1,y=0,y=1,y=-x+z所围面积
当0<z<1时, F(z) = (z^2)/2
当1<z<2时, F(z) = (z^2/2)-(z-1)^2
Z=X+Y的概率密度
f(z) = dF(z)/dz=z 0<z<1; f(z) = 2-z 1<z<2.
卷积函数法:
f(x)=u(x)-u(x-1) --- 这里u是阶跃函数.(u(x)=1,x>0,=0,x<0)
f(y)=u(y)-u(y-1)
X,Y 独立,Z=X+Y,所以f(z)是f(x)和f(y)的卷积.
f(z)=f(x)*f(y) --- * 是卷积.x处要带入z.y处也要带入z.
f(z)= (u(z)-u(z-1)) *(u(z)-u(z-1))
f(z) = z,当 0<z<1; f(z) = 2-z,当 1<z<2;
f(z) = 0,其余.