已知矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠DAE:∠BAE=3:1,则∠EAC=_.

问题描述:

已知矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠DAE:∠BAE=3:1,则∠EAC=______.

如图
∵∠DAE:∠BAE=3:1,
∴∠BAE=22.5°,
∴∠ABE=67.5°,
∵四边形ABCD是矩形,
∴AC=BD,AO=CO,BO=DO
∴OA=OB,
∴∠OAB=∠ABE=67.5°
∴∠EAC=∠OAB-∠BAE=67.5°-22.5°=45°.
故答案为:45°.