如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.甲同学认为:若MN=EF,则MN⊥EF;乙同学认为:若MN⊥EF,则MN=EF.你认为( )A. 两人都不对B. 两人都对C. 仅甲对D. 仅乙对
问题描述:
如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.甲同学认为:若MN=EF,则MN⊥EF;乙同学认为:若MN⊥EF,则MN=EF.你认为( )
A. 两人都不对
B. 两人都对
C. 仅甲对
D. 仅乙对
答
知识点:本题考查了正方形的性质,全等三角形的判定与性质,同角的余角相等的性质,作出辅助线,构造出全等三角形是解题的关键,通常情况下,求两边相等,或已知两边相等,都是想法把这两条线段转化为全等三角形的对应边进行求解.
如图,过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,∵四边形ABCD是正方形,∴EG=MP,对同学甲的说法:在Rt△EFG和Rt△MNP中,MN=EFEG=MP,∴Rt△EFG≌Rt△MNP(HL),∴∠MNP=...
答案解析:分别过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,根据正方形的性质可得EG=MP,对甲同学的说法,先利用“HL”证明Rt△EFG和Rt△MNP全等,根据全等三角形对应角相等可得∠MNP=∠EFG,再根据角的关系推出∠EQM=∠MNP,然后根据∠MNP+∠NMP=90°得到∠NMP+∠EQM=90°,从而得到∠MOQ=90°,根据垂直的定义,MN⊥EF,当E向D移动,F向B移动,同样使MN=EF,此时就不垂直;对乙同学的说法,先推出∠EQM=∠EFG,∠EQM=∠MNP,然后得到∠EFG=∠MNP,然后利用“角角边”证明△EFG和△MNP全等,根据全等三角形对应边相等可得EF=MN.
考试点:正方形的性质;全等三角形的判定与性质.
知识点:本题考查了正方形的性质,全等三角形的判定与性质,同角的余角相等的性质,作出辅助线,构造出全等三角形是解题的关键,通常情况下,求两边相等,或已知两边相等,都是想法把这两条线段转化为全等三角形的对应边进行求解.