x^2+y^2+4x-4y-10=0,C2:x^2+y^2-4x+4y+6=0,证明这两圆相切,并求过切点的切线方程

问题描述:

x^2+y^2+4x-4y-10=0,C2:x^2+y^2-4x+4y+6=0,证明这两圆相切,并求过切点的切线方程

C1:①x²+y²+4x-4y-10=0,即:﹙x+2﹚²+﹙y-2﹚²=﹙3√2﹚²,∴圆心为A﹙-2,2﹚,半径=3√2,C2:②x²+y²-4x+4y+6=0,即﹙x-2﹚²+﹙y+2﹚²=﹙√2﹚²,...