已知三角形ABC与三角形ADE均为等腰直角三角形,∠ABC和∠ADE为直角,AB=BC,AD=DE,连接CE并取CE的中点F,连接DF,BF,试探究线段DF与BF的关系,

问题描述:

已知三角形ABC与三角形ADE均为等腰直角三角形,∠ABC和∠ADE为直角,AB=BC,AD=DE,连接CE并取CE的中点F,连接DF,BF,试探究线段DF与BF的关系,

(1)DF=BF且DF⊥BF.(1分)
证明:如图1:
∵∠ABC=∠ADE=90°,AB=BC,AD=DE,
∴∠CDE=90°,∠AED=∠ACB=45°,
∵F为CE的中点,
∴DF=EF=CF=BF,
∴DF=BF;(2分)
∴∠DFE=2∠DCF,∠BFE=2∠BCF,
∴∠EFD+∠EFB=2∠DCB=90°,
即:∠DFB=90°,
∴DF⊥BF.(3分)
(2)仍然成立.
证明:如图2,延长DF交BC于点G,
∵∠ABC=∠ADE=90°,
∴DE∥BC,
∴∠DEF=∠GCF,
又∵EF=CF,∠DFE=∠GFC,
∴△DEF≌△GCF,
∴DE=CG,DF=FG,(4分)
∵AD=DE,AB=BC,
∴AD=CG,
∴BD=BG,(5分)
又∵∠ABC=90°,
∴DF=BF且DF⊥BF.(6分)
(3)仍然成立.证明:如图3,延长BF至点G,使FG=BF,连接DB、DG、GE,
∵EF=CF,∠EFG=∠CFB,
∴△EFG≌△CFB,
∴EG=CB,∠EGF=∠CBF,
∴EG∥CB,
∵AB=BC,AB⊥CB,
∴EG=AB,EG⊥AB,
在△ADM和△EMN中,
∵∠ADE=90°,EG⊥AB,
又∵∠AMD=∠EMN,
∴∠DAB=∠DGE,
∴△DAB≌△DEG,
∴DG=DB,∠ADB=∠EDG,(7分)
∴∠BDG=∠ADE=90°,
∴△BGD为等腰直角三角形,
∴DF=BF且DF⊥BF.(8分)点评:主要考查了旋转的性质,等腰三角形和全等三角形的判定.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.