Z=xy+x*F(u),而u=y/x,F(u)为可导函数,证明:x(αz/αx)+y(αz/αy)=z+xy

问题描述:

Z=xy+x*F(u),而u=y/x,F(u)为可导函数,证明:x(αz/αx)+y(αz/αy)=z+xy

x(αz/αx)=x*(y+F(u)+x*(-y)/x^2)
y(αz/αy)=y*(x+x*(1/x))
左边=xy+y-y+xy+y=2xy+y
右边=xy+x*(y/x)+xy=2xy+y
左边=右边
所以……