已知二次函数f(x)=ax2-bx+1. (1)若f(x)<0的解集是(1/4,1/3),求实数a,b的值; (2)若a为正整数,b=a+2,且函数f(x)在[0,1]上的最小值为-1,求a的值.
问题描述:
已知二次函数f(x)=ax2-bx+1.
(1)若f(x)<0的解集是(
,1 4
),求实数a,b的值;1 3
(2)若a为正整数,b=a+2,且函数f(x)在[0,1]上的最小值为-1,求a的值.
答
(1)不等式ax2-bx+1>0的解集是(
,1 4
),1 3
故方程ax2-bx+1=0的两根是x1=
,x2=1 4
,1 3
所以
=x1x2=1 a
,1 12
=x1+x2=b a
,7 12
所以a=12,b=7.
(2)∵b=a+2,
∴f(x)=ax2-(a+2)x+1=a(x-
)2-a+2 2a
+1,(a+2)2 4a
对称轴x=
=a+2 2a
+1 2
,1 a
当a≥2时,x=
=a+2 2a
+1 2
∈(1 a
,1],1 2
∴f(x)min=f(
)=1-a+2 2a
=-1,∴a=2;(a+2)2 4a
当a=1时,x=
=a+2 2a
+1 2
=1 a
,∴f(x)min=f(1)=-1成立.3 2
综上可得:a=1或a=2.