(x方分之x+1)-(x+1分之2x方)=1换元法解分式方程

问题描述:

(x方分之x+1)-(x+1分之2x方)=1换元法解分式方程

(x+1)/x²-2x²/(x+1)=1设(x+1)/x²=t,则方程变为:t-2/t=1,即:t²-t-2=0,即(t-2)(t+1)=0∴t1=2 t2=-1即:(x+1)/x²=2,或者(x+1)/x²=-1∴2x²-x-1=0,或者x²+x+1=0解得:x1=1 x2=...